3 UE
|
1
Ableitung der Sinus- und Kosinusfunktion
|
Funktionen
und Analysis
(3) nutzen die
Eigenschaften von ganzrationalen Funktionen,
Exponentialfunktionen, Sinusfunktionen,
Kosinusfunktionen, der natürlichen Logarithmusfunktion und
von Potenzfunktionen mit rationalem Exponenten sowie
der Transformationen dieser Funktionen zur
Beantwortung von Fragestellungen
(6) bilden ohne Hilfsmittel die
Ableitungen von (…) Sinus- und Kosinusfunktionen,
der
natürlichen Logarithmusfunktion sowie von
Potenzfunktionen mit rationalem Exponenten
und wenden die Produkt- und Kettenregel an
(9) nutzen zusammengesetzte
Funktionen (Summe, Produkt, Verkettung) zur
Beschreibung quantifizierbarer Zusammenhänge
(23) lösen innermathematische
und anwendungsbezogene Problemstellungen mithilfe
von ganzrationalen Funktionen,
Exponentialfunktionen und daraus zusammengesetzten
Funktionen sowie
mithilfe von Sinus- und Kosinusfunktionen
|
Funktionen
und Analysis
(2) nutzen die
Eigenschaften von ganzrationalen Funktionen,
Exponentialfunktionen, der Sinusfunktion, der
Kosinusfunktion, der Potenzfunktionen 𝑥 und 1𝑥
sowie der Transformationen dieser Funktionen zur
Beantwortung von Fragestellungen
(5) bilden ohne Hilfsmittel die
Ableitungen von (…) der Sinus- und
Kosinusfunktion, sowie der Potenzfunktionen 𝑥 und
1𝑥 und wenden die Produktregel an
(6) wenden die Kettenregel auf
Verknüpfungen der natürlichen Exponentialfunktion
mit linearen Funktionen an
(7) untersuchen Funktionen auch
in Abhängigkeit von Parametern mithilfe von
vorgegebenen und mit dem MMS ermittelten
Ableitungen im Kontext der Fragestellung
(8) nutzen in einfachen Fällen
zusammengesetzte Funktionen (Summe, Produkt,
Verkettung) zur Beschreibung quantifizierbarer
Zusammenhänge
(20) lösen innermathematische
und anwendungsbezogene Problemstellungen mit-hilfe
von ganzrationalen Funktionen, der natürlichen
Exponentialfunktion und daraus zusammengesetzten
Funktionen
|
Ope-12 verwenden im Unterricht
ein modulares Mathematik-system (MMS) zum …
– zielgerichteten Variieren von
Parametern von Funktionen
Mod-3 übersetzen zunehmend
komplexe reale Situationen in mathematische
Modelle
Pro-5 nutzen heuristische
Strategien und Prinzipien (Analogiebetrachtungen,
Schätzen und Überschlagen, systematisches
Probieren oder Ausschließen, Darstellungswechsel,
Zerlegen und Ergänzen, Symmetrien verwenden,
Invarianten finden, Zurückführen auf Bekanntes,
Zerlegen in Teilprobleme, Fallunterscheidungen,
Vorwärts- und Rückwärtsarbeiten, Spezialisieren
und Verallgemeinern)
|